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Optical microscopy is going through a
paradigm shift with computation at its core

Past: Solely rely on optics for image formation

input instrument output

Present: Use signal processing for improved performance

input instrument computation output

Future: Advanced inference for retrieving “hidden” information

input
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Optical tomographic microscopy
replaces x-rays with the visible light
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Optical tomographic microscopy
replaces x-rays with the visible light

array of




&2 Whshington

Optical tomography is a
powerful tool for live cell imaging

3D + Time:
Reveadls internal cell structure across time

Quantitative and Label-free:
Relies on the refractive index as an intrinsic contrast

High-resolution and Non-ionizing:
Visible light spectrum (380-700 nm) is ideal for cell imaging
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Optical tomography
suffers from several critical limitations

Lengthy acquisition:
Needs 100s or 1000s of illuminations

Imaging artifacts:
Missing information and model mismatch

Sophisticated optics:
Holographic acquisition of phase limits applicability
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Goal: Overcome these limitations by
leveraging advanced computational imaging

Forward model:
describes the physics of data acquisition

Image prior:
iInfuses domain-specific knowledge about the unknown image

---------------------------------------------------------------------------------------------------------

Computational imaging to the rescue:
. Can we use the very best computational tools to
- enable fast and accurate optical tomography?
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Today we will talk about

e Accounting for nonlinearities in optical tomography

e Fast online imaging using “plug-in” operators

e Total variation for deep image prior (DIP-TV)
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Today we will talk about

e Accounting for nonlinearities in optical tomography
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Absorption and scattering limit the ability of
noninvasive imaging deep insider the tissue

light absorption and scattering
at different wavelengths



Absorption and scattering limit the ability of
noninvasive imaging deep insider the tissue

Scattering is the deflection of a
propagating wave ‘ray’ from its original direction

homogeneous object
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Absorption and scattering limit the ability of
noninvasive imaging deep insider the tissue

Scattering is the deflection of a
propagating wave ‘ray’ from its original direction

No
scattering

near-nomogeneous object
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Absorption and scattering limit the ability of
noninvasive imaging deep insider the tissue

Scattering is the deflection of a
propagating wave ‘ray’ from its original direction

No
scattering

Weak
scattering

Multiple
scattering

scattering object
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Absorption and scattering limit the ability of
noninvasive imaging deep insider the tissue

Scattering is the deflection of a
propagating wave ‘ray’ from its original direction

. convex optimization
. + fast algorithms

. » complicated models
+ * nonconvex optimization
. » hard to analyze
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Absorption and scattering limit the ability of
noninvasive imaging deep insider the tissue

Scattering is the deflection of a
propagating wave ‘ray’ from its original direction

Scattering limits conventional imaging systems to
superficial layers of an object
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Optical tomography is traditionally
simplified to a linear forward model

The Helmholtz equation for modeling object-light interactions
(A + ki Due(z) = fz)u(z) u(®) = U (2) + ()

The Domain-integral formulation with the Green’s function

ekl

w@)= [ oo f@fule)de o) 2

drr||a|

The first Born approximation linearizes the model

()
(by ignoring multiple scattering) | Uin (513) ‘ ‘ I’
()




& Washington

Linearized scattering model leads to the
Fourier diffraction theorem
Assume a weakly scattering (i.e., quite transparent) object
Uso ()| < U, ()]
This leads to the Fourier diffraction theorem
subsampling in
: Fourier space
) o
U g transmission
Flw) — TTTTTtTTTTT

Wolf, “Three-dimensional structure determination of semi-transparent objects from
holographic data,” Opt. Comm., vol. 1, no. 4, pp. 153—156, Sep/Oct 1969
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Linearized scattering model leads to the
Fourier diffraction theorem

Assume a weakly scattering (i.e., quite transparent) object

Uz ()| <

Uin ()|

This leads to the Fourier diffraction theorem

: subsampling in

: Fourier space

_ - - A Wy
b g *
\,ﬂc " reflection
0%

Wolf, “Three-dimensional structure determination of semi-transparent objects from
holographic data,” Opt. Comm., vol. 1, no. 4, pp. 153—156, Sep/Oct 1969
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Linearized scattering model leads to the
Fourier diffraction theorem

Assume a weakly scattering (i.e., quite transparent) object

Uz ()| <

Uin ()|

This leads to the Fourier diffraction theorem

Y = Sk {Fwif(®)}]

Discretize by approximating the object with its samples

Bostan et al., “Sparse Stochastic Processes and Discretization of Linear Inverse Problems,”
IEEE Trans. Image Process., vol. 22, no. 7, pp. 2699—2710, July 2013.
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Linearized scattering model leads to the
Fourier diffraction theorem

Assume a weakly scattering (i.e., quite transparent) object

Use ()] < | ()]

This leads to the Fourier diffraction theorem

Y = Sk {Fwif(®)}]

Discretize by approximating the object with its samples

f(@)~ > fnd(x—nA)

nell

Thus, we obtain a linear inverse problem: ;| y=Hf +e ;
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Beam propagation method (BPM)
efficiently models forward multiple scattering

uin(w) usc(m)

thin object

(@) = (dr2 % uin)(®)  w2(®) = (@) 0r2(®)  usc(®) = (D12 % u2) ()
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Beam propagation method (BPM)
efficiently models forward multiple scattering
Uin () Usc ()
multiple
thin objects

recursive structure
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Beam propagation method (BPM)
efficiently models forward multiple scattering

multiple
thin objects

recursive structure
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Image formation under BPM is analogous to the
training of convolutional neural nets (CNNs)

1) Initialize object
2) llluminate object and measure the scattered field
3) Run forward BPM propagation
4) Run BPM error back-propagation to obtain the gradient
5) Update the image

6) Return object after convergence

backprop

Ujn Al Sul compute
error

||||
|||||

. 1 [ 1
.........
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FISTA and ADMM are two popular algorithms for
large-scale and nonsmooth optimization

Consider a minimization problem

min {C(F) £ D(f) + R(F) | D) 2 Sy — . (B)I,

Define the proximal operator for
avoiding differentiating the regularizer

(

_ 1
proxse (y) £ argmin { 3|y — £17, + AR(D)}

Fast iterative shrinkage/thresholding algorithm (FISTA) vs.
Alternating direction method of multlpllers (ADMM)

R A /2l Lz proxw)(fk_1 —sh 1

f* prova(zk + 5P 1)

ISTA: gx = 1/FISTA. specific gx

ADMDM fast practical convergence
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Our regqularized BPM framework was
extensively validated on 3D optical tomography

( L N )
1
min ¢ o= > [lye = ul(E)[I7, + A ) [[Dflalle, ¢
L /—1 n=1 y

Fit to L illuminations + isotropic SD-T'V prior

Kamilov et al., “Optical Tomographic Image Reconstruction Based on Beam
Propagation and Sparse Regularization,” IEEE Trans. Comp. Imag., 2016.
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Our regqularized BPM framework was
extensively validated on 3D optical tomography

Experimental data

Learning
tomography

Straight ray

first Born

81 holograms &1 holograms 6 holograms

Kamilov et al., “Optical Tomographic Image Reconstruction Based on Beam
Propagation and Sparse Regularization,” IEEE Trans. Comp. Imag., 2016.
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Today we will talk about

e Fast online imaging using “plug-in” operators
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Can we use semantic priors for
Improving image formation?

The recent interest in sparse recovery highlighted the
Importance of structural priors in image formation

How can we create priors beyond simple constraints
(for example: we know that we are looking at cells)?

Deep neural nets provide a powerful tool for
representing and enforcing sophisticated image priors

deep conv net

ITDIT :

3 64 4000 64 '
/A 128 128 3274 - o —
16,7 g 25 512 51 g 256 16 b . o ! ]
ol 4 ‘Exj ; E Y w 4 ’ DRI 45 '4 B O
, - : : - '
> > > > 4‘ / > | arai 1
32 16 8 4 8 16 32 i '
4 '-
4x4 4x4 4x4 4x4 4x4 | 4x4 4x4 4x4 4x4 4x4 "
(conv)™  (conv) (conv) (conv) (conv) (uconv) (uconv) (uconv)  (uconv)™  (uconv) <

Pathak et al., “Context Encoders: Feature Learning by
Inpainting,” Proc. CVPR, June 2016
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A well established deep learning pipeline:
first backproject then denoise with a conv net
Data processing pipeline
‘ '_) H" => '_)' W m (il ewe- sl A10- f’ f’ '_) | NG

data “backproject” noisy image denoising conv net

Question: What are some of the key limitations of this approach?

1) Implicit dependance of the conv net on the forward model
2) Consistency with the measured data is unclear

3) Needs a sufficiently good starting point to denoise
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Treating a denoiser as a proximal operator allows
to separate the prior from the forward model

Build a denoiser at various noise levels

7" proxﬂ)(fk_1 — st h z" — s —AVD(sF )
f* « denoise, (2" +s*71) i i fF « denoise,(z")
st g1 4 (28 — £F) i s £ + ((qr—1 — 1)/q) (£" — £771)
PnP-ADMM T | 'i5'r{|5"|='|'éﬁ """""""""""""""""""""" |

Venkatakrishnan et al., “Plug-and-Play Priors for Model Based Reconstruction,” Kamilov et al., “A Plug-and-Play Priors Approach for Solving
Proc. IEEE GlobalSIP, pp. 945-948, December 2013. Nonlinear Imaging Inverse Problems,” IEEE Signal Process. Lett., 2017
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Plug-and-play priors (PnP) approach has been
shown to yield state-of-the-art results

Metmod | A e
TV 29.22
oosusp | sose |
- assree | s |
- wem | mos
""""

(d) NCSR. 28.39dB (e) P3-TNRD 28.43dB

Romano et al., “The Little Engine That Could: Regularization by Denoising,”
SIAM J. Imaging Sci., vol. 10, no. 4, pp. 1804-1844, 2017
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We prove using monotone operator theory that
PnP-ISTA converges for averaged denoisers

An averaged deep conv net is straightforward to build

nonexpansive

For a convex data-fidelity, the iterates of PnP-ISTA satisfy

£ —Pee|f* < 2 G 7 9) [£0— £ P(f) = denoise, (f — 7VD(F))

where the fixed point satisfies the consensus equilibrium (CE)

f* = prox.p(f* — u) £*

*
. * ] * . f h— u ﬁ _ f _I_ u
. f* = denoise, (f* +u) : data prior
Sun, Wohlberg, Kamilov, “An Online Plug-and-Play Algorithm for Buzzard et al., “Plug-and-Play Unplugged: Optimization free

Regularized Image Reconstruction,” IEEE Trans. Comp. Imag, 2019 reconstruction using consensus equilibrium,” 2019
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Our analysis extends recent results on the
convergence of PnP schemes

---------------------------------------------------------------------------------------------------------------

[Sreehari et al.]: When D(-) is convex and Vdenoise, (-) is a symmetric matrix with
eigenvalues in [0, 1], then denoise, (-) is a proximal operator.

[Chan et al]: When both VD(:) and denoise,(-) are bounded operators, PnP-
ADMM with a quadratic parameter update scheme converges to a fixed point.

Unfortunately no convergence rate
PnP-ISTA can diverges for bounded operators!

Sreehari et al., “Plug-and-Play Priors for Bright Field Electron Chan et al., “Plug-and-Play ADMM for Image Restoration: Fixed-Point
Tomography and Sparse Interpolation,” IEEE Trans. Comp. Imag., 2016 Convergence and Applications,” IEEE Trans. Comp. Imag., 2016
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PnP-SPGM accelerates image formation in
optical tomography with many measurements

In reality, the data-fidelity has the following form

1

D) = 57 3~ Ive (DI, = 9P = 737 | Feul ()| (0~

PnP-SPGM can accelerate image formation by
reducing per-iteration cost (and also parallelizing the algorithm)

A

: k—1 . : k1 i use only B << L
. VD(s" ") < minibatchGradient(s"" ", B) : measurements per iteration

L z" s AVD(sF -
;  Converges to the same

. f* « denoise, (z") ! solution as PnP-ISTA

Sun, Wohlberg, Kamilov, “An Online Plug-and-Play Algorithm for
Regularized Image Reconstruction,” IEEE Trans. Comp. Imag, 2019
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When the number of measurements is large,
PnP-SPGM converges faster than batch algorithms

Experimental FPM data

Using 60 (out of total 293) illuminations per iteration

Sun et al., “Regularized Fourier Ptychography using an
Online Plug-and-Play Algorithm,” Proc.IEEE ICASSP 2019
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Today we will talk about

e Total variation for deep image prior (DIP-TV)
Using untrained CNNs as imaging priors
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Does the excellent performance of conv nets
exclusively come from from learning?

A deep conv net fits more easily to
natural images compared to noise

0.08 —— Image
\\\\\\‘ —— Image + noise
0.06 —— Image shuffled
U(0, 1) noise
v,
0.02
0.00

101 1072 103 104
Iteration (log scale)

Ulyanov et al., “Deep Image Prior,” Proc. CVPR, 2018
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Does the excellent performance of conv nets
exclusively come from from learning?

A deep conv net fits more easily to
natural images compared to noise

This suggests that it can be used as
a deep image prior (DIP) in an inverse problem

f = fo-(z) 0" = argemin {%Hy B HfO(Z)HEQ}

"
--E---G-G-

(a) Original image (b) Bicubic, Not trained (c) Ours, Not trained (d) LapSRN, Trained (e) SRResNet, Trained

Ulyanov et al., “Deep Image Prior,” Proc. CVPR, 2018
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DIP can be conveniently combined with
other priors to further stabilize and improve it

Can a combination of TV and DIP improve
over both when they are used separately?

F=fol@) 0" =agmin{ly - Hfo@)Z, + IDJolo)], |

We adopt a simple modified U-Net architecture
considered in the original DIP paper

n,i]
g 1
128 Skip Connect 128
128 128
128 128
128 | 128 (@)
+ o
= | =+
al— — —> — — — — e k*
= | P
— | e
| »
. |
“  encoder | decoder
== skip — max pool =—» upsample
ni] | LeakyReLu [ BN uli]

128 128
II I I I I I D3x3 conv. [1x1 conv. | d[i]

Liu et al., “Image Restoration using Total Variation
Regularized Deep Image Prior,” November 2018



DIP can be conveniently combined with
other priors to further stabilize and improve it

grayscale denoising
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|Images | 1 | 2 [ 3 | 4 | 5 [ 6 | 7 | 8 | 9 [ 10 | 11 | 12 13 14 |
Input SNR =5 dB / 0 =76.26
EPLL | 18.60 | 21.39 | 19.18 | 15.29 | 16.88 | 16.54 | 18.33 [ 21.80 | 21.21 | 20.19 | 19.38 | 19.85 | 16.85 | 21.20
BM3D | 18.72 | 22.22 | 18.81 | 15.31 | 16.86 | 16.50 | 18.30 | 21.87 | 21.55 [ 20.25 | 19.52 | 20.35 [ 17.33 | 21.22
TV  [17.22 [ 20.38 | 17.65 | 13.74 | 16.24 | 15.42 | 16.57 [ 19.71 | 20.09 | 18.38 | 18.49 | 18.27 | 16.23 | 20.60
DIP | 17.98 [ 21.19 | 18.78 | 14.98 | 16.16 | 16.19 | 17.61 | 21.44 | 21.08 | 18.67 | 18.97 | 20.19 | 16.64 | 20.51
DIP-TV | 18.84 | 22.41 [ 19.56 | 15.52 | 16.99 | 16.79 | 18.48 | 22.26 | 21.61 [ 19.10 | 19.55 | 20.52 [ 17.80 | 21.57
Input SNR = 10 dB / 0 =53.43
EPLL | 21.21 | 24.21 | 21.96 | 17.81 | 19.42 | 19.65 | 20.88 | 24.59 | 23.68 | 21.20 | 21.79 | 22.98 | 19.65 | 23.91
BM3D | 21.30 | 25.10 | 21.57 | 17.81 | 19.39 | 19.58 | 20.84 | 24.65 | 24.01 [ 21.28 | 21.90 | 23.39 [ 20.20 | 23.85
TV [ 19.76 | 22.82 | 20.39 | 16.34 | 18.45 | 18.04 | 18.91 | 22.62 | 22.15 | 20.34 | 20.56 | 20.80 | 18.85 | 22.83
DIP | 20.76 | 24.32 [ 21.55 | 17.81 | 18.82 [ 19.14 | 20.21 | 24.43 [ 23.24 | 21.01 | 21.22 | 23.46 | 19.90 | 22.99
DIP-TV | 21.33 | 25.11 [ 22.10 | 17.96 | 19.43 | 19.61 | 20.89 | 24.77 | 23.81 [ 21.57 | 21.65 | 23.60 | 20.46 | 24.12

Liu et al., “Image Restoration using Total Variation
Regularized Deep Image Prior,” November 2018
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DIP can be conveniently combined with
other priors to further stabilize and improve it

Original Corrupt

color deblurring

: 4 A ) | B 3
’ - ; ‘ Kl 2
e B Raid
N > L RS g 4
= B LA

—

Original

Liu et al., “Image Restoration using Total Variation
Regularized Deep Image Prior,” November 2018
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To conclude

e Optical tomographic live-cell imaging could benefits
from nonlinear forward models and advanced priors

e BPM is a simple, yet effective, nonlinear model that
accounts for forward multiple scattering

e We increasingly rely on implicit regularization using
nonlinear operators, such as deep neural nets

® Plug-In SPGM is a theoretically sound algorithm that
can regularize at large-scales using nonlinear operators

e Deep conv nets can reqularize with or without training,
and can be combined with traditional reqularizers
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